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Abstract. A classification of ODE from the point of view of singular point analysis is 
suggested. The general formula for the Painlevt resonances is derived and the resonance 
analysis of low-order dominant truncations is performed. The resonance formulae for the 
Painlevt chains are presented and the significance of the Painlevt chains for the classification 
is explained. 

1. Introduction 

Painlevi-type equations, i.e. those whose solutions have no movable critical points [ 13, 
have become rather popular recently due to their connection with PDE integrable by 
the inverse scattering transform [2]. The classification of Painlevi-type ODE of the 
first, second and third order is known [ 1,3] but to my knowledge there is no systematics 
of higher-order equations. 

A way towards such systematics was indicated in [4,5] where several special cases 
were investigated. The idea consists in using the singular point analysis suggested in 
[2] as a tool for the identification of candidates for higher-order PainlevC-type 
equations. 

Singular point analysis (SPA) is a very simple and powerful method for testing the 
Painlevi property of differential equations. Basically it consists in substituting the 
anticipated expansion of a solution in the vicinity of a singular point xO 

T 

u ( x ) =  c U , ( X - x X g ) n + p  P < O  (1.1) 
n = O  

into the tested equation and investigating whether this expansion is compatible with 
the equation and contains a sufficient number of undetermined coefficients for the 
approximation of a general solution. The equations that pass this test will be called 
Painlevi admissible. 

In this paper a method for the classification of the PainlevC admissible ODE is 
presented and analysis of the ‘resonances’ of the expansion (1.1) is performed in detail. 

The suggested classification follows the basic steps of the SPA. In the first step the 
general forms of dominant parts are specified. Next the resonance analysis is used to 
restrict coefficients of the dominant parts and finally the compatibility conditions of 
the SPA specify the ‘recessive’ parts of the equation. 

The main topic of this paper is resonance analysis. We shall derive a resonance 
formula that will prove useful for many purposes, explaining, for example, the results 
on Painlevi chains in [4,6]. 
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2. The dominant truncations 

First, let us introduce some notation that will be used below. The dependent variable 
will be usually denoted by U and the independent one by x. The derivatives will be 
denoted as follows: 

d" 
U, = U,, = u,x,,,,:=-u(x) (2.1) 

uo:= U = u(x)  E c X € C .  (2.2) 

n = 1,2,  , . . 
ax 

The polynomial ODE of order N can in general be written as 

E(e,g):= c gK(X)[UI"(X)=O 
k c r  

where E is a set of multi-indices of length N +  1, 

(2.3) 

K := ( ko , k I , . . . , k N  ) 

[U]" := u,kou:I . . , U $  
k, E N (2.4) 

(2.5) 

and g, are analytical functions. 
The sum in (2.3) is supposed to be finite. We might admit k, E Z in (2.4) as well, 

which would correspond to rational ODE, but as any rational equation can always be 
multiplied by a common denominator there is no loss of generality in assuming k, E N. 

k 

Example. The set of indices of the Riccati equation is 

E = ((0, I) ,  (2,0),  (1,0),  (0,O)) 

The first two steps of the SPA, i.e. the determination of the dominant behaviour and 
resonances, deal only with the so-called leading or dominant terms. These are the 
terms of the investigated equation that, after the substitution ( l . l ) ,  produce the lowest 
power of x - xo. It is therefore useful to define the dominant truncation of the ODE 

(we preserve the terminology of [4]). 

Definition. The p dominance of the term [U]" is 

(2.7) 

where N ( K )  is the order of the term [U]". 

Definition. Let the ODE be of the form (2.3). The p dominance of the equation is 

p ( p ,  E )  := min K E E  D(p,  K ) .  (2.8) 

The p-dominant truncation of the equation is 

The most important are the dominant truncations for p < 0 which will be treated below. 
The first step in the suggested classification of the PainlevC admissible ODE is to 

write down the classes of the dominant truncations with p dominance equal to m. 
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Definition. Let M ( p ,  m )  be the set of all multi-indices K corresponding to terms (of 
a priori unspecified order) with the p dominance equal to m: 

M ( p ,  m )  := {K, D(p,  K )  = m}. (2.10) 

Then 
(2.11) 

where g ,  (x) are analytic functions. We shall denote the set of T ( p ,  m, g )  with arbitrary 
(analytic) g by T(p,  m). 

The simplest classes of p-dominant truncations T ( p ,  m) containing at least two terms 
are displayed in table 1. 

Further classification of Painlev6 admissible T ( p ,  m, g )  follows from their resonance 
analysis. 

Table 1. Dominant truncations with p dominance equal to m. The coefficients 
A, B, C.. . . are functions of x. 

P m Element of T(p ,  m )  

-1 -2 
-3 
-4 
- 5  

-2 -4 
-5 
-6 
-7 

-3 -6 
-7 

-4 -8 

Au, + Bu2 
Au,, i Bu,u i Cu3 
Au,,, i Bu,,u i Cu', + Du,u2 i Eu4 
Au,,+ Bu,,,u+ Cu,,u,+Du,,u2 
i Eui U i Fu,u' i  Gus 

Au,, + Bu2 
Au,,, f Bu,u 
A u , , i B u , , u + C u ~ i D u 3  
A u , , i  B u , , , ~  f C U , , ~ ,  i Du2u, 

Au,,, f Bu2 
Au,, i Bu,u 

AU,, + B U ~  

3. The resonance formulae 

The resonances corresponding to a differential equation are defined in [2] as powers 
of (x - xo) in the expansion (1.1) whose coefficients remain undetermined after the 
substitution of (1.1) into the equation. They are determined only by the dominant 
truncation of the equation. 

Prior to the determination of the resonances of a given T ( p ,  m, g) we must evaluate 
the coefficient u0 of the leading term in (1.1) The equation for u0= a occurring in the 
leading-order term (1.1) of the solution expansion is 

(3.1) K d ( K ) = O  A b ,  m, g, a ) : =  C gK(xO)[pI a 
K s M ( p ,  m )  

where d ( K )  is the degree of the term [U]" 

d ( K ) : =  1 k, N ( K )  

j = O  
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Equation (3.1) is obtained by the substitution u ( x )  - U ( X - X ~ ) ~  in (2.11). Similarly, 
the equation for the resonances is obtained by the substitution 

U = U ( X  - xO)'[ 1 + b ( x  - x O ) ~ ]  (3.4) 

into (2.11) and collecting terms linear in b [2]. In this way we obtain 

The results can be summarised as follows. 

Theorem 1. The resonances of the dominant truncation (2.11) are solutions of the 
equation for r :  

(3.6) K d ( K i  R(P, m, g, a, r )  := c gK(Xo)[PI a Y(P, K ,  r )  = 0 
K s M ( p , m )  

where 

(3.7) 

and a is a solution of (3.1). 

As we can see, equation (3.6) is polynomial. Its degree is equal to the order of the 
dominant truncation T ( p ,  m, g). It depends on uo = a that on the other hand is a 
solution of (3.1). In general there can be more than one solution of (3.1) so we can 
get several families of resonances. 

Corollary. In every family one of the solutions of (3.6) is always r = -1 (for any p ,  m, g). 

Indeed 

Y(p ,  K,  r = -1) = p - ' D ( p ,  K )  (3.8) 

and due, to the fact that the sum in (3.6) is performed over K such that D(p, K )  = m, 

R ( p , m , g , a , r = - l ) = A ( p , m , g , a )  (3.9) 

and (3.6) is satisfied by r = -1 as a consequence of (3.1). 
Actually, this corollary is nothing but a check of the correctness of (3.6), because 

it is a well known fact that the resonance r = -1 must appear as a consequence of 
arbitrariness of xo in (1.1). 

In the following we shall use the resonance formulae (3.1) and (3.6) for the investiga- 
tion of some simple dominant truncations. 
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4. The resonance analysis of T ( p ,  m, g) 

As explained in [2] an equation of order N can have the Painleve property only if all 
resonances with Re r > 0 are integer and for at least one solution a of (3.1) there are 
N -  1 positive distinct integer roots of (3.6). This ‘resonance value criterion’ puts a 
restriction on possible g K ( x )  in the dominant truncations T ( p ,  m, g )  obtained in 9 2. 
The equations that have only one-term dominant truncations like, for example, U, = U 
must be treated separately and we shall not consider them here. 

The simplest two-term dominant truncations belong to T(-1, -2). They are of first 
order so they have only one resonance that inevitably must be -1 and no other 
conditions follow from the resonance criterion. This is in accordance with the fact 
that the general Riccati equation has the Painleve property. 

A more interesting case is T (  - 1, -3) containing the dominant truncations 

Au,, + Buu, + Cu3 (4.1) 
where A, B, C are up to now arbitrary functions of x. The case A = 0 corresponds to 
UT(-1, -2) where, moreover, the singular point U = 0 of the equation must be investi- 
gated. Therefore, we shall assume non-zero A and, without loss of generality, we can 
set A = 1. Equations (3.1) and (3.6) give for this case 

Coa * - Bo a + 2 = 0 

3 Coa* + Boa( r - 2) + ( r  - 1)( r - 2) = 0 

( r + 1 )[ ( r - 4) + Boa] = 0. 

(4.2) 

(4.3) 

(4.4) 

giving 

(Bo and CO denote B(xo) and C(xo).)  
If CO = 0, this means that C = 0 because xo is arbitrary in the SPA and 

a =2 /Bo  r = -1,2. (4.5) 
The (hybrid [4]) case C # 0 is a little more complicated. These are two solutions 

a, of (4.2) and, due to (4.4), two families of resonances -1, r+ related by 

a,Bo = 4 - r , .  (4.6) 
Inserting (4.6) into (4.2) we get 

(8 - r+ - r - )  = Bi/Co = i (4 -  r+)(4- r - )  (4.7) 
or 

r- = 2 + 4 / (  rt -2). (4.8) 
The resonance criterion requires that at least one of rf must be positive integer and 
the other must not be positive non-integer. The only such r* compatible with (4.8) are 

r ,  E {-2, 1,3,4,6}. (4.9) 
From (4.7) and (4.5) then we can conclude that the only Painlevi admissible dominant 
truncations from the class T (-1, -3) are 

(4.10) 

where R = 1,2,3,4.  The function b ( x )  can be easily transformed out by U ( x )  = 
b(x)u(x).  These equations correspond to the cases i(b), i(c), i(d), i(e) of the Painleve 
classification [ 11. 

T (  -1, -3, R )  = U,, + (4 - R )  ~ ( x ) u u ,  + (2 - R )  b(x)’u3 
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The resonance analysis of T(-1, m )  with lower m leads to Diophantine equations 

The dominant truncations of T(  -2, -4) 
that are more complicated than (4.8). They are under investigation at present. 

Au,, + Bu2 (4.11) 

are not restricted by the resonance value criterion. It is easy to show that for arbitrary 
non-zero A and B there are two solutions -1  and 6 of (3.6). 

On the other hand, we can exclude the whole class of dominant truncations 
T(-3, -6). The equation for the resonances is 

( r  + 1 )( r2  - 13 r + 60) = 0 (4.12) 

that in addition to r = -1  has complex roots with Re r > 0 so that the resonance criterion 
excludes T(-3, -6) from the list of candidates on dominant truncations of PainlevC- 
type equations. For reasons that will become clear in the next section we can exclude 
T(-3, -7) as well. 

The resonance analysis .of T(p,  m )  for p < -1  is slightly simpler than that of 
T (  -1, m). The dominant truncations of T ( p ,  m )  are of the order p - m in general and 
do not involve terms with the ( p  - m - l)th, ( p  - m -2)th,. . . , ( 2 p  - m + 1)th derivatives 
from which important identities for the resonances follow. One of them is [5] 

r ,  + r 2 + .  . .+ rp-,,, =+(m - p ) ( p +  m + 1 )  (4.13) 

A convenient tool for the investigation of T ( p ,  m )  with lower m are the so-called 
Painlevi chains investigated in the next section. 

Let us stress that the SPA is useful not only for identifications of dominant parts 
T ( p ,  m, g )  of Painlevi-type equations but also for the determination of their ‘recessive’ 
parts that contain terms with p dominance >m. We shall not deal with this problem 
in general here but we shall present an example. 

The most general form of the ODE corresponding to T(-2, -4) is 

A ( x ) u , , + B ( x ) u 2 +  C ( x ) u , + D ( x ) u + E ( x )  =O. (4.14) 

By the transformation 

= 4 ( x )  W(Z)  = A ( x ) u ( x ) + p ( x )  (4.15) 

this equation can be simplified to 

W,, = 6 W 2 +  S ( z ) .  (4.16) 

The compatibility condition at r = 6 gives 

S ( z )  = az+ b (4.17) 

which corresponds to cases 11-IV of the PainlevC classification [l]. By similarly 
investigating the equations corresponding to (4.10) we obtain the other polynomial 
equations of this classification. 

5. Painleve chains 

PainlevC chains were introduced in [4,6] and it was observed that they have characteris- 
tic chains of resonances. The resonance formulae (3.6) and (3.1) enable us to explain 
these chains of resonances. 
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We shall define the derivative chain of the dominant truncation T(p,  m, g)  as 
p-dominant truncations of the derivatives of T ( p ,  m, g) ,  i.e. differentiating T ( p ,  m, g) 
we obtain 

( 5 . 1 )  

and obviously the p-dominant truncation ( p  < 0) of (5 .1 )  is the sum of the second 
term. We shall denote Tl(p, m, g)  := d,T(p, m, g)  where d, represents the differentiation 
of [ U ] "  only (the gK(x) remain untouched by d , ) .  

Example. d , T ( - 2 ,  -6, g )  = T ( - 2 ,  -7 ,  g), d,T(-3, -6, g )  = T(-3,  -7 ,  g) where g' is 
another analytic function (see table 1 ) .  

Dejinition. The nth element of the derivative chain is 

We are interested in what happens to the set of resonances at this 'differentiation'. 
Let us start with Tl (p ,  m, g). From (5.2) we obtain 

N ( K )  

Tl(p, m , g ) =  C gK kJIUIKJ 
K E M ( p , m )  j = O  

where 

K J : = ( k o ,  kl,  . . . ,  5 - 1 ,  k ,+l+l ,  . . . ,  K N ) .  

One can immediately see from ( 2 . 7 ) ,  (5.3) and (5.4) that 
j = O , .  . , , N ( K )  D ( p , K , ) = D ( p , K ) - l  

(5.3) 

(5.4) 

( 5 . 5 )  
and therefore the p dominance of T l ( p ,  m, g)  is m - 1. For the other functions of K 
we obtain 

d ( K j )  = d ( K  ) 
[ P I  K~ = (P - j ) [ p I K  

(5.6) 
(5.7) 

Due to (5 .3) ,  (5.6) and ( 5 . 7 )  the left-hand side of (3.1) transforms to 

(5 .9 )  

so that the values of a that will enter the equation for resonances remain unchanged. 
From ( 5 . 8 )  and definitions of Y(p,  K, r )  and M ( p ,  m )  we find that the left-hand 

side of the equation for resonances transforms to 

(5.10) 

Hence the set of resonance of Tl (p ,  m, g )  is that of T ( p ,  m, g)  extended by r = -m for 
every branch of a. By induction we get the following theorem. 
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Theorem 2. The p dominance of T,(p,  m, g)  is m - n and the set of resonances for the 
solution a, of (3.1) is 

%,,(aj) = 9, , (u j )u  {-m, -m + 1 , .  . . , -m + n - I}. ( 5 . 1 1 )  

The resonance values of the derivative chains investigated in [4-61 agree with equation 
( 5 . 1 1 ) .  

A generalisation of the pure derivative chain is the chain where the operation of 
differentiation alternates with multiplication by [ U ]  : 

(5.12) 

where K, are arbitrary multi-indices (even the negative integer components are admiss- 
ible). The special cases are the pure derivative chains where all K, = (0, 0, . . , ) and 
the Schwarzian chain investigated in [6]: 

S,,(-l, -6) := u ; ” ~ : [ u ; ’ ( ~ u , u ,  - 3 ~ ; ) l .  (5 .13)  

For the investigation of the resonances of the generalised derivative chain we must 
investigate the behaviour of necessary characteristics at the multiplication of T ( p ,  m, g) 
by [U]“. The equations for a and r remain unchanged and the p dominance changes 
to m + D(p,  K ) .  From this and (5.10) it is easy to deduce the following theorem. 

As we have admitted also the negative powers of U, at this stage we can see that, by 
the operation (5.12),  one can produce rather arbitrary sets of resonances. The values 
of Ks,l do not appear in (5.14) so that the factor [ u ] ~ s + I  in (5.12) can be used for the 
repolynomialisation of the dominant truncation (5.12). 

The importance of the derivative chains consists in the possibility of describing 
some dominant truncations with lower m as linear combinations of the generalised 
derivatives of those with higher m. An example of such an interesting generalised 
derivative chain is 

[~n(x)dx+An(x) I* .  . [ ~ l ( x ) d x + A I ( x ) l ~ ( x )  (5 .15)  

that for n = 1,2 generates the general forms of T(-1, -n - 1 )  and for higher n their 
special cases. The resonance formulae (3 .1 )  and (3.6) then enable a description of the 
sets of resonances similar to (5.1 1) and (5.14) and their exploitation for the identification 
of the PainlevC admissible dominant truncations. 

6. Conclusions 

We have introduced the concept of p dominance, useful for the determination of 
possible dominant truncations of Painleve-type differential equations. 
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The resonance formulae, i.e. the general form of equations for the leading term 
and the resonances of the expansion ( l . l ) ,  have proved useful for further classification 
of the dominant truncations and determination of resonances of the so-called PainlevC 
chains. The formulae may find other applications in methods based on singular point 
analysis. 

In this paper we have restricted ourselves to ODE but the results are useful for the 
SPA of PDE [7] as well because quite often the dominant truncation of PDE contain 
derivatives WRT only one independent variable (Kdv,  M K d v  and others). Moreover, it 
seems that the extension of the presented classification to PDE does not meet with 
major difficulties even though the calculations are much more tedious and extensive [8]. 
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